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Fredholm methods for billiard eigenfunctions in the coherent state representation

Fernando P. Simonotti and Marcos Saraceno
Departamento de Fı´sica, Comisio´n Nacional de Energı´a Atómica, Avenida Libertador 8250, (1429) Buenos Aires, Argentina

~Received 12 January 2000!

We obtain a semiclassical expression for the projector onto eigenfunctions by means of the Fredholm theory.
We express the projector in the coherent state basis, thus obtaining the semiclassical Husimi representation of
the stadium eigenfunctions, which is written in terms of classical invariants: periodic points, their monodromy
matrices, and Maslov indices.

PACS number~s!: 05.45.2a, 03.65.Sq, 41.20.Jb
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I. INTRODUCTION

The precise test of semiclassical approximations in
presence of chaos is of great interest to establish the limit
applicability of periodic orbit theory and its resummation
This test can be done in model systems both on approxi
tions to the spectrum or to the stationary states. For the
culation of the spectrum the most efficient tool in this resp
seems to be the spectral determinant@1,2# and several calcu
lations @3# have demonstrated that, given enough perio
orbits, the spectrum can be accurately represented semi
sically. However, a more sensitive test—and still a gr
challenge—is the semiclassical representation of sin
eigenfunctions. This includes the study of the scar phen
ena @4–10# and the eventual deviations from uniformity o
eigenfunctions in accordance with the Berry-Voros hypo
esis@11,12# and Schnirelman’s theorem@13#.

Just as for spectral problems, the use of Fredholm m
ods allows for the most efficient encoding of classical inf
mation in the calculation for single eigenfunctions@7,14#. In
this paper we review these methods and apply them to
calculation of Husimi distributions of stadium eigenfun
tions.

This paper is organized as follows. In Sec. II we revie
the Fredholm method for billiard eigenfunctions. Fredho
theory allows us to find the solution to certain type of in
gral or operator equations@15#. For billiards these method
can be applied to the boundary integral equation. In Sec
we make the semiclassical approximation that is based on
approximation of the traces and powers of the propagato
sums over the periodic points of the underlying classical s
tem. The propagator itself is taken as Bogomolny’sT opera-
tor @1#. We choose the coherent state representation and
tain an expression for the semiclassical Husi
representation of the eigenfunctions in terms of classical
variants: periodic points, their monodromy matrices, a
Maslov indices. In Sec. IV we apply this scheme for t
stadium billiard. Our conclusions and perspectives are p
sented in Sec. V.

II. FREDHOLM FORMULAS FOR EIGENFUNCTIONS

Fredholm theory gives the solution to a certain class
integral equations, which can also be written as opera
PRE 611063-651X/2000/61~6!/6527~11!/$15.00
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equations@15#. A Fredholm integral equation of the secon
type is

x~q!5x0~q!1lE dq8T~q8,q!x~q8!. ~1!

All the functions are defined in a finite domain. If the know
functions x0(q) and T(q8,q) are well behaved, the Fred
holm alternative holds: there is a unique solutionx with the
same analytic properties or the homogeneous equationx0
50) has a solution. There is a set of complex parameterl i
for which the solution is not unique. In operator notation, t
inverse of (12lT) exists iflÞl i . In this case, this inverse
can be written as

1

12lT
5

M ~l!

D~l!
, ~2!

where the operatorM (l) and the functionD(l) are series in
l. If T is a compact operator,D(l) andM (l) are entire in
l and, thus, absolutely convergent. The explicit form for t
series expansion in terms of powers ofT is given below. In
what follows we apply this general theory assumingT to be
unitary and of finite dimensionN. Both assumptions are jus
tified in the semiclassical limit for the quantization of bi
liards @1#.

A. Secular equation

The k’s eigenvalues are given by the secular equat
P(k)5det@12T(k)#50. We can expand this determinant

P~k!5 (
n50

N

bn~k!, ~3!

where the coefficientsbn(k) are related to the traces o
T(k), bn(k)[tr Tn(k), through

bn~k!52
1

n (
j 51

n

bn2 j~k!bj~k!. ~4!

Thus, knowledge of the traces up to a certainnmax implies
the knowledge of the coefficientsbn up to the samenmax.

If T(k) is unitary,P(k) is self-reversive, meaning that it
coefficients satisfy
6527 ©2000 The American Physical Society
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bN2 j~k!5~21!N b̄ j~k!detT~k!. ~5!

This condition alone forces the eigenvalues ofT at fixedk
to be symmetric with respect to the unit circle: ifl is an
eigenvalue, then 1/l̄ is an eigenvalue too. Of course, ifT is
unitary, then this condition is automatically satisfied but
can use it in our semiclassical approach to partially res
unitarity.

The contributions from coefficientsb i with i .@(N
11)/2# can be expressed in terms of coefficientsb i with i
<@(N11)/2#. (@x# is the integer part ofx.! So, if N is even,

P~k!5h~k!1detTh̄~k!,

h~k!5 (
j 50

N/221

b j~k!1
1

2
bN/2 , detT5

bN/2

b̄N/2

. ~6!

If N is odd,

P~k!5h~k!2detTh̄~k!,

h~k!5 (
j 50

(N21)/2

b j~k!, detT52
b (N11)/2

b̄ (N21)/2

. ~7!

As a consequence of the imposition of this symmetry on
operatorT we obtain two advantages: only traces up to h
the Heisenberg timetH5N are needed and the eigenvalu
are constrained to lie on the unit circle or in symmetric pa

These formulas relateP(k) with the traces of powers o
T(k) which, in turn are related semiclassically to period
orbits and to the smoothed density of states@16#. They have
been tested extensively for the hyperbola billiard by Keat
and Sieber@3#.
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B. Green function

To extend these methods to the calculation of eigenfu
tions, we define a generalized Green functionG(k):

G~k!5
T~k!

12T~k!
. ~8!

This operator has poles at the billiard eigenvaluesk5kn and
its residues are the projectors onto the corresponding ei
functions. It has a Fredholm expression as

G~k!5
T~k!Ct

„12T~k!…

P~k!
, ~9!

whereCt
„12T(k)… is the transpose of the cofactor matrix

12T(k) and, as in Eq.~2!, has an expansion in powers o
T(k).

It is then convenient to define anormalized Green opera
tor as

g~k!5
G~k!

tr@G~k!#
, ~10!

where the singularities in the denominator have been eli
nated. The normalized Green operator has the prop
g(kn)5ucn&^cnu, whereucn& is the eigenvector correspond
ing to eigenvaluekn . Then, we can writeg(k) in the follow-
ing way:

g~k!5
T~k!Ct

„12T~k!…

tr@T~k!Ct
„12T~k!…#

. ~11!

As the cofactor matrix can be expanded in powers of
propagator and as the propagator itself is unitary we write
normalized Green operator in terms of the powers of
propagator and their traces up toN/2 ~if N is even!:
g~k!5

(
i 50

N/2 21

ci~k!T i 11~k!2detT~k! (
i 50

N/2 21

c̄i~k!T†i~k!

(
i 50

N/2 21

ci~k!tr@T i 11~k!#2detT~k! (
i 50

N/2 21

c̄i~k!tr@T†i~k!#

, ~12!
-
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where the coefficientsci(k) are given by

ci~k!5 (
n5 i

N/2 21

bn2 i~k!. ~13!

An analogous formula can be derived in caseN is odd.
The coefficientsci(k) are dependent on the traces ofTn

through Eqs.~4! and ~13! and thus are independent of th
chosen representation. On the other hand, the expressio
the powers of the propagator will depend on the represe
tion chosen for the calculation of the eigenfunctions. If t
coordinate representationuq& is chosen, Eq.~12! relates the
for
a-

probability densityufn(q)u2 to the diagonal powers of the
propagator̂ quTn(k)uq&. If the Weyl representation is cho
sen, then Eq.~12! gives the Wigner distribution ofufn& in
terms of the Weyl propagator@7,17#. Here we choose the
coherent state representation to find the equivalent Hus
distribution.

We remark that Eq.~12! is a very compact and represe
tation independent derivation of formulas that were pre
ously very laboriously derived for the Wigner case. It pr
pares in an optimal way the grounds for the semiclass
approximation because its ingredients are all dependen
classical elements, namely periodic orbits, phase space
ume, and generating function.
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Using the fact that atk5kn the normalized Green function is the projector onto the corresponding eigenstate, we can
the Husimi distribution as

Hcn
~z,z̄!5

^zu g~kn!uz&

^zuz&
5

1

^zuz&

(
i 50

N/2 21

ci~k!^zuT i 11~k!uz&2detT~k! (
i 50

N/2 21

c̄i~k!^zuT†i~k!uz&

(
i 50

N/2 21

ci~k!tr@T i 11~k!#2detT~k! (
i 50

N/2 21

c̄i~k!tr@T†i~k!#

. ~14!
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This scheme was successfuly applied in simple quan
maps@18#.

III. SEMICLASSICAL APPROXIMATION

Green’s theorem allows us to reduce the Schro¨dinger
equation for the billiard with Dirichlet boundary condition
to the following linear homogeneous equation for the norm
derivative on the borderf(s),

f~s!522 R ds8f~s8!K ~s,s8;k!, ~15!

where the kernel is

K ~s,s8;k!5
2 ik

2
cosc~s! H1

(1)@kur ~s!2r 8~s8!u#,

~16!

with k the wave number,c(s) the angle between the norm
at s and the line that connectsr (s) with r 8(s8) ~see Fig. 1!,
andH1

(1) the Hankel function of the first type and order on
We introduce the wave functionm(s)

f~p!5
1

ik
A12p2m~p!, ~17!

with f(p) andm(p) the momentum representations off(s)
and m(s). This transformation makes the kernel symmet
and turns Eq.~15! to

m~s!5 R T~s8,s;k!m~s8!ds8. ~18!

The semiclassical theory of the kernelT(s8,s;k) @1# is
based on two fundamental properties:T is semiclassically
unitary and has an effective dimensionN(k)5Lk/p, where
L is the length of the billiard. Moreover, the kernel is give
by the generating function of the classical Birkhoff map@see
Eq. ~19!#. These properties have been extensively tested@19#
and will be assumed in what follows.

Thus, we make the semiclassical approximation by tak
T as Bogomolny’s operator~19! and by evaluating all inte-
grals by stationary phase approximation. TheT operator for
convex billiards in the plane, taking its border as the Po
carésection and using Birkhoff coordinates, is

T~s8,s;k!5S k

2p i D
1/2U]2l ~s8,s!

]s]s8
U1/2

expS ikl ~s8,s!2 i
p

2
n D ,

~19!
m

l

.

g

-

where the bounce map is generated by the arc lengthl (s8,s)
betweens and s8; n is the Maslov index. The quantizatio
condition is det@12T(k)#50.

In the semiclassical theory for the spectral determinan

P~k!5det@12T~k!# ~20!

the approximate unitarity ofT can be used efficiently to
reduce the number of periodic orbits needed for the com
tation of the spectrum. Similar manipulations of the Fre
holm formulas allow for the same reduction in the semicl
sical calculation of single eigenfunctions of the billiard.

A. Semiclassical traces and determinant

First we need the traces. It is a well known fact that th
adopt the following semiclassical expression@16#:

@bn#scl5 (
PO,n5npr

np

udet~ I 2M p
r !u(1/2) exp@ ir ~klp2npp/2!#,

~21!

where the sum goes over all the primitive periodic orb
~PO’s! of the billiard with periodnp , which must be a divi-
sor of n, Maslov indexnp , length l p , and monodromy ma-
trix M p . The Maslov index can be interpreted geometrical
pnp is the angle swept by the unstable manifold ofM p along
the PO.

The determinant ofT can be obtained as@1#

@detT~k!#scl5~21!N exp@2p iN~k!#, ~22!

whereN(k), the number of states between 0 andk, is

N~k!5
1

4p
Ak22

1

4p
Lk, ~23!

FIG. 1. Geometry of the billiard.
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with A the area of billiard andL its length. These are th
semiclassical ingredients needed for the calculation of
spectrum and of the coefficientsci(k).

B. Semiclassical propagator in coherent state representation

We first obtain the coherent state representation for
iteration of the bounce map,

^z8uTuz&5E ds ds8^z8us8&^s8uTus&^suz&. ~24!

That is to say,

^z8uTuz&5S k

ps2D 1/2S k

2p i D
1/2

e(2 ipn/2)

3E ds ds8U ]2l

]s]s8
U1/2

exp@ ikF~s8,s!#, ~25!

where

F~s8,s!5
i

2
z821

i

2
z2

i

2s2 s822
iA2

s
z8s81

i

2s2 s22
iA2

s
z̄s

1 l ~s8,s!, ~26!
e

e

and z85(q8/s2 isp8)/A2 and z5(q/s2 isp)/A2. The
most important contributions come from those pointss* and
s8* that make stationary the phaseF:

]F

]s
~s* ,s8* !5

i

s2 s* 2
iA2

s
z̄1

] l

]s
~s* ,s8* !50,

]F

]s8
~s* ,s8* !5

i

s2 s8* 2
iA2

s
z81

] l

]s8
~s* ,s8* !50. ~27!

The solution to Eq.~27! satisfying the reality conditions is

s* 5q,
] l

]s
~s* ,s8* !52p

s8* 5q8,
] l

]s8
~s* ,s8* !5p8. ~28!

This is a classical trajectory from (q,p) to (q8,p8). Thus, the
matrix element̂ z8uTuz& will be nonzero only ifz andz8 are
connected by the classical dynamics. Let us call these po
zc and zc8 and let us calculate the matrix element to ne
order in their neighborhoods,^zc81dz8uTuzc1dz&. To this
effect we expandF(s8,s) in Eq. ~25! to second order and
after some algebra,
ckets.
g

f

F~ds8,ds!' l ~qc8 ,qc!1F2 idz8z̄c82 id z̄zc2
i

2
z̄czc2

i

2
z̄c8zc8G1F i

4
~ z̄c8

22zc8
22 z̄c

21zc
2!G1F i

2
dz821

i

2s2 ds822
iA2

s
dz8ds8

1
i

2
d z̄21

i

2s2 ds22
iA2

s
d z̄ds1

1

2S ]2l

]s82 ds8212
]2l

]s8]s
ds8ds1

]2l

]s2 ds2D G , ~29!

whereds5s2qc andds85s82qc8 . We change to new integration variablesds andds8 and obtain

^zc81dz8uTuzc1dz&'S k

ps2D 1/2S k

2p i D
1/2

exp~2 ipn/2!E dds dds8U ]2l

]s]s8
U1/2

exp@ ikF~ds8,ds!#. ~30!

We now insert Eq.~29! in Eq. ~30!. All terms are constant with respect to integration except the last one in square bra
The resulting integral is the coherent state representation, with respect toudz&, of the linearized map, whose generatin
function is quadratic, which we have introduced in Eq.~A5!:

^dz8uTudz&5
1

As̄c

expF k

2s̄c
~2 r̄ cdz8212dz8d z̄1r cd z̄2!G , ~31!

wherer c y sc are the matrix elements of the linearized map in complex coordinates. Finally we arrive at

^zc81dz8uTuzc1dz&'expF2k

4
~ z̄c8

22zc8
22 z̄c

21zc
2!GexpFkS dz8z̄c81d z̄zc1

1

2
z̄czc1

1

2
z̄c8zc8D GexpS ikl 2 i

p

2
n D ^dz8uTudz&.

~32!

This result lets us evaluate the matrix element we were looking for,^zuTnuz&/^zuz&, which will be a sum of contributions o
periodic pointszpp of periodn in the semiclassical limit,

^zuTnuz&

^zuz&
' (

pp,n

^zpp1dzuTnuzpp1dz&

^zpp1dzuzpp1dz&
. ~33!

To obtain the composition̂zpp1dzuTnuzpp1dz& we use the expression~32! and the composition rule of Eq.~A6!. Then
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^zuTnuz&
^zuz&

' (
pp,n

1

As̄pp

lppexpS ikl pp2 i
p
2 nppDexpF k

2s̄pp
~2 r̄ ppdz212dzd z̄1r ppd z̄2!2kdzd z̄G , ~34!
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wherelpp can be calculated by Eq.~A7!, npp5n ~because of
the Dirichlet boundary conditions!, and l pp is the length of
the PO starting from (qpp ,ppp). As we can see, the matri
element behaves as a Gaussian in the vicinities of the p
odic point. This allows us to write the Husimi representati
of thenth power of the propagator as a sum of contributio
from periodic points of periodn. Each term of the sum is a
Gaussian packet in phase space whose parameters are r
to the monodromy matrix in complex coordinates. A P
composed byn points will give n differentcontributions to
this sum, due to the fact that the monodromy matrices
each point differ. However, the invariant properties of the
matrices are the same and the usual Gutzwiller-Tabor t
formula @16# can be recovered by integration. Of course
periodic point of periodn will contribute also to thern (r
natural! powers of the propagator.

We should remark at this point that the different semicl
sical representations of the propagator in terms of the co
sponding generating function are onlysemiclassically
equivalent and thus can give different results at finiteN. This
is not true for the calculation for the spectral determina
whose semiclassical expression in terms of periodic orbit
the same in all representations. It is because of this that
different ways of computing eigenfunctions are not equi
lent. For the calculation ofufn(s)u2 the closed~but not nec-
esarily periodic! orbits are needed@1#. For the Wigner func-
tion calculation only periodic points are needed but ea
contribution is extended in phase space. In the present
malism we will obtain the Husimi distributions of eigenfun
tions in terms of deformed localized Gaussians centere
the periodic points, constructed solely in terms of class
information.

C. Symmetries

Our system, the stadium billiard, has two discrete spa
symmetries:Rx and Ry , the two reflections with respect o
the coordinate axes. These spatial symmetries in the dom
reflect in the border and, thus, in the classical and quan
map on it. Their action on the Birkhoff coordinates of pha
space (q,p) is

Rx~q,p!→~L2q,2p!, Ry~q,p!→S L

2
2q,2pD ,

RxRy~q,p!→S L

2
1q,1pD . ~35!

In order to have coherent states on the border with cor
symmetries we need to project them usingRx and Ry , the
unitary representations of the symmetriesRxux,y&5u2x,y&
andRyux,y&5ux,2y&. Then we define

uzsxsy
&5S 11sxRx

2 D S 11syRy

2 D uz&

A^zuz&
, ~36!
ri-
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wheresx ,sy561 andRx and Ry move the center of the
coherent state according to Eq.~35!.

In this way, the diagonal matrix elements of the propag
tor in symmetrized coherent state representation are

1

^zuz&
^zuTS 11sxRx

2 D S 11syRy

2 D uz&

5
1

4^zuz&
~^zuTuz&1sx^zuTRxuz&1sy^zuTRyuz&

1sxsy^zuTRxRyuz&!. ~37!

We have already calculated̂zuTnuz&. We still have to
calculate the other three contributions,̂zuTnRxuz&,
^zuTnRyuz&, and ^zuTnRxRyuz&. We can conclude using th
results we have already obtained that each of them will b
sum of Gaussians centered in those pointsz that the dynam-
ics connects with their symmetric partners,Rxz, Ryz, RxRyz,
respectively. These points belong to PO’s whose periods
2n, which are symmetric under the operationsRx , Ry ,
RxRy , respectively. The incrementRdz with respect toRz
(R[Rx ,Ry ,RxRy) is related to the incrementdz with re-
spect toz through

Rdz5tRdz, tR5H 21 if R5Rx

21 if R5Ry

1 if R5RxRy .

~38!

Thus we arrive at

^zuTnRuz&
^zuz&

' (
pp,2n

1

As̄pp

lpp expS ikl pp2 i
p
2 nppD

3expF k

2s̄pp
~2 r̄ ppdz212tRdzd z̄

1r ppd z̄2!2kdzd z̄G , ~39!

where the sum goes over the periodic points of periodn
that belong to PO’s symmetric underR. The quantitiesspp ,
r pp , l pp , npp, and lpp are calculated along the trajector
that connectz to Rz, i.e., half PO.

IV. SEMICLASSICAL EIGENFUNCTIONS
FOR THE STADIUM

We use the semiclassical approach we introduced ab
for the stadium billiard. We choose odd-odd symmetr
(sx5sy521) ands52. We have periodic points with de
symmetrized period up to 8~around 800!. We have used the
symbolic dynamics developed by Biham and Kvale@20# to
obtain them. The wave numberk is related to the maximum
period used in the expansion~14! by P(k)5(L/2p)k
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'0.4k. In this way we can obtain semiclassical approxim
tions of eigenfunctions of wave numberk<20.

In Fig. 2 we show the phase space representations o
first six powers of Bogomolny’sT operator fork520; in
Fig. 3 we show the semiclassical approximations. We
that the exact representations show global maxima in
bouncing ball region that cannot be reproduced semicla
cally for the lowest powers. However, the overall semicl
sical behavior is very close to that of the exact represe
tions. ~Because of the symmetries we chose, we have
semiclassical approximation to the first power of the opera
because the contribution of the only periodic point of per
1 is zero.!

We select two energy ranges:kP@19.1,20.0# and k
P@20.5,21.3#. There are four eigenenergies in each of the
ranges. We show the absolute value of the secular dete
nant,uP(k)u, for each of them in Figs. 4 and 5. The full lin
is the semiclassical approximation, the dashed line is
secular determinant for Bogomolny’s operator. The verti
lines are the exact quantumk eigenvalues calculated by th
scaling method@21#. We see a good approximation when w
use the periodic point expansion. The agreement shows
in this region the spectrum is well represented semicla

FIG. 2. Phase space representations for the first six power
Bogomolny’s operator. For each power we show modulus~rows 1
and 2! and phase~rows 3 and 4!.
-

he

e
e
i-
-
a-
o
r

e
i-

e
l

at
i-

cally. ~The discontinuities come from the change in dime
sion of the operator.!

To keep the method consistent we evaluated
semiclassical Husimi expansion in those values ofk
that minimize the semiclassical secular determina
We see in Figs. 6 and 7 the exact eigenfunctions~first
column! and their corresponding semiclassical Husi
representations~second column! obtained as the rea
part of Eq. ~14!. The global behavior is well reproduced
however, the finer details are hard to mimic. The bounc
ball region is problematic: in some function
~e.g.,k521.16) some probability leaks to this region. Pro
ably PO’s with longer periods that approximate the bounc
ball orbits could make a better picture for th
region.

One of the advantages of formula~12! for the projector
is that it has no singularities between eigenvalues. It
possible to study continually its behavior as a functi
of k in order to see its sensitivity to changes ink. Some
properties of the exact distribution as a function ofk are as
follows @22#:

~i! The distribution is positive at the eigenvalueskn .
~ii ! The distribution hasN(k) zeros at eigenvalueskn .

of FIG. 3. Semiclassical phase space representations for the
six powers of Bogomolny’s operator. For each power we sh
modulus~rows 1 and 2! and phase~rows 3 and 4!.
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FIG. 4. Secular determinant. In full line we
show the PO’s approximation; in dashed line, t
exact by using Bogomolny’s operator. For th
semiclassical approximation we summed up
period 8.
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These two properties follow from the fact thatHcn
(z,z̄) is

the modulus of an analytic function. The distributions b
tween eigenvalues can become negative. In particular, it
be shown that at the value ofk that maximizesP(k), the
distribution is constant. This property can be used to con
the semiclassical approximations.

In Figs. 8 and 9 we show the behavior of the distributi
^zug(k)uz&/^zuz& between the semiclassical eigenvaluesk
519.18 andk519.38. Whenk519.18 the distribution is
positive and has well defined minima that approach zero.
we move away from the eigenvalue, the distribution chan
smoothly. Initially it moves away from the planeg50 in
the positive direction, then it comes back and tur
negative. During this ‘‘evolution’’ it flattens visibly and we
cannotdiscern its features. Atk519.32, aproximately the
maximum of the secular determinant, see Fig. 4, the dis
bution is constant. At the semiclassical eigenvaluek
519.38 the distribution is positive again with well define
minima.

We can see from Figs. 6 and 7 that the sem
classical approximation is relatively good. It is not trivial
obtain a positive defined distribution withN zeroes adding
several hundreds of Gaussians, each with its phase and
formation.
-
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V. CONCLUSIONS

Using Fredholm theory we have given a very comp
and representation independent derivation of the projecto
a single eigenfunction for unitary quantum maps. Express
the projector in the coherent state basis we wrote a semic
sical expression for the Husimi distributions of the billiard
eigenfunctions. Each periodic point contributes with
Gaussian centered in it whose parameters are calculated
with classical information. We should not underestimate
difficulties and complexities inherent to this method. Hu
dreds of Gaussian contributions have to conspire to mak
positive definite distribution withN zeros that approximate
the quantum Husimi distributions.

The projector ~12! can be represented in coordina
space. We obtain ^quc&^cuq&, whose semiclassica
approximation can be directly compared to the probabi
density in the section. This representation has an additio
difficulty, since the semiclassical approximation is writte
as a sum over closed trajectories, periodic or not,
configuration space. Those that are not periodic are m
in number and more difficult to find. Anyway, we ca
apply our scheme for Bogomolny’sT(q8,q) operator and
compare the results with the exact quantum calculation
Fig. 10 we see that the approximation is excellent at t
level.
he
e
to
FIG. 5. Secular determinant. In full line we
show the PO’s approximation; in dashed line, t
exact by using Bogomolny’s operator. For th
semiclassical approximation we summed up
period 8.
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The maximum periodP in the expansions is related to th
energy in the wayP'0.4k. Due to the exponential prolifera
tion of orbits in chaotic systems, the method cannot be
plied for arbitrarily high energies. The measure of this p
liferation is the topological entropyW which relates the
numberNP of PO’s of a given periodP with the period itself,
NP5exp(WP) @23#. For the stadium,W'0.94. Then, fork
'100 we need PO’s of periods up toP540, whose number
is NP'exp(0.94340)'1017. The Fredholm method we de
veloped is a first step and shows that the eigenfunctions
be described as expansions in terms of the periodic poin
the underlying classical system. It eliminates the diverg
cies associated that the schemes based on smoothings
ergy have. However, the exponential divergence of perio
orbits poses a serious practical problem, as discussed in
previous paragraph. This method can only become prac
for large kn if some way of selecting a few ‘‘important’
orbits at each value ofk can be developed. Some results

FIG. 6. Husimi representations of stadium eigenfunctions~left
panels! and their semiclassical approximations~right panels! for the
energy range of Fig. 4. For the semiclassical approximation
summed up to period 8.
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-
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this direction have been obtained by Vergini and Ca
@21,24,25#.

APPENDIX A: COMPLEX PHASE SPACE

We introduce the following symplectic transformationZ,
depending upon parameters, acting on a point of classica
phase space (q,p) @26#:

S z

pz
D 5ZS q

pD 5S 1/A2s 2 is/A2

2 i /A2s s/A2
D S q

pD . ~A1!

Imposing reality conditions on the inverse transformation
see thatz̄5 ipz . A linear transformationM5(c d

a b) in (q,p)
phase space has a representationMz in (z,pz) phase space by
conjugation withZ,

e

FIG. 7. Husimi representations of stadium eigenfunctions~left
panels! and their semiclassical approximations~right panels! for the
energy range of Fig. 5. For the semiclassical approximation
summed up to period 8.
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Mz5ZMZ215S s̄ 2 ir

i r̄ s
D with H s5

1

2 F ~a1d!2 i S b

s2 2s2cD G
r 5

1

2 F ~d2a!1 i S b

s2 1s2cD G . ~A2!
m
tro
-

in
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ert

n d
This (z,pz) phase space allows a passage to quantum
chanics. This is done in a Hilbert Bargmann space by in
ducing operatorsz and pz that satisfy the conmutator rela
tions

@z,pz#5 i\, @z,z#5@pz ,pz#50. ~A3!

Any vector uc& in Hilbert space can be represented
this new space aŝzuc&5*dq^zuq&^quc&, where the coher-
ent states are ^zuq&5@1/(p\s2)#1/4exp@2(1/\)(z2/2
1q2/(2s2)2A2zq/s)#. The scalar product iŝ c1uc2&
5*c̄1(z)c2(z)dm(z) with norm dm(z)5(1/p)exp
(2zz̄/\)dRe(z)d Im(z).

FIG. 8. Variation of the normalized Green function in cohere
state representation betweenk519.18 andk519.28.k519.18 is a
semiclassical eigenvalue.
e-
-

We now define the Husimi representation of a vectorc as

Hc~z![
u^zuc&u2

^zuz&
. ~A4!

It is a real positive function for everyz in the complex
plane.

The representation of a linear symplectic transformat
M in phase space in terms of a unitary operator of Hilb
Bargmann space is@27#

t FIG. 9. Continuation of Fig. 8. Variation of the normalize
Green function in coherent state representation betweenk519.28
andk519.38.k519.38 is a semiclassical eigenvalue.
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FIG. 10. Exact eigenfunction
~dashed line! for k520.5289 and
its approximation by using Bogo
molny’s operator in the normal-
ized Green function~full line!.
tions

e or
s in
M5S a b

c dD→^z8uU~M !uz&

5
1

Aus̄u
expS 2 i

2
arg~ s̄!D expF k

2s̄
~2 r̄ z8212z8z̄1rz̄2!G .

~A5!

This representation is up to a phase@27,28# and its compo-
sition law is

E ^z8uU~M1!uz&^zuU~M2!uz9&dm~z!

5l~M1 ,M2 ,M1M2!^z8uU~M1M2!uz9&, ~A6!
m
s

with

l~M1 ,M2 ,M1M2!5expH i

2 Farg~ s̄!2arg~ s̄1!2arg~ s̄2!

2argS s̄

s̄1s̄2
D G J 561. ~A7!

The accumulated phase due to succesive transforma
leads to the Maslov index of the trajectory.

In case the phase space shows periodicity in coordinat
momentum, we have to periodize the coherent states a
@29#.
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