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Fredholm methods for billiard eigenfunctions in the coherent state representation
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We obtain a semiclassical expression for the projector onto eigenfunctions by means of the Fredholm theory.
We express the projector in the coherent state basis, thus obtaining the semiclassical Husimi representation of
the stadium eigenfunctions, which is written in terms of classical invariants: periodic points, their monodromy
matrices, and Maslov indices.

PACS numbegps): 05.45-a, 03.65.5q, 41.20.Jb

[. INTRODUCTION equationg 15]. A Fredholm integral equation of the second
type is
The precise test of semiclassical approximations in the
presence of chaos is of great interest to establish the limits of _ H‘J' da'T(a’ / 1
applicability of periodic orbit theory and its resummations. X(@=xola) AT axa). @

This test can be done in model systems both on approxima-II he f . defined in a finite d in. I the K
tions to the spectrum or to the stationary states. For the cal- t € unctions are de |r1e In afinite domain. [f the known
unctions xo(q) and T(q',q) are well behaved, the Fred-

culation of the spectrum the most efficient tool in this respec ; . . o
P P olm alternative holds: there is a unique solutpprvith the

seems to be the spectral determindng] and several calcu- same analytic properties or the homogeneous equaygn (

lations [3] have demonstrated that, given enough periodiczo) has a solution. There is a set of complex parameters
orbits, the spectrum can be accurately represented semicla‘%— X

. y : r which the solution is not unique. In operator notation, the
sically. However, a more sensitive test—and still a greatnverse of (1-AT) exists ifA £\, . In this case, this inverse
challenge—is the semiclassical representation of singl . '

eigenfunctions. This includes the study of the scar phenomgan be written as

ena[4-10 and the eventual deviations from uniformity of 1 M(\)
eigenfunctions in accordance with the Berry-Voros hypoth- =——) (2
esis[11,12 and Schnirelman’s theoref3]. 1-AT  D(™)

Just as for spectral prot_)le_:ms, the use of FredhOIm.methv'vhere the operatdvl (\) and the functiorD (\) are series in
ods allows for the most efficient encoding of classical infor-

mation in the calculation for single eigenfunctids14]. In A. If T is a compact operatoD (1) andM(1) are entire in

this paper we review these methods and apply them to thé a_nd, thus, apsol_utely convergent. The e>§plicit form for the
calculation of Husimi distributions of stadium eigenfunc- Series expansion in terms of powersofs given below. In
tions. what follows we apply this general theory assumingp be

This paper is organized as follows. In Sec. Il we reViewunitary and of finite dimensioN. Both assumptions are jus-

the Fredholm method for billiard eigenfunctions. Fredholmt.iﬁed in the semiclassical limit for the quantization of bil-
theory allows us to find the solution to certain type of inte—“ards[l]'

gral or operator equatior{45]. For billiards these methods )

can be applied to the boundary integral equation. In Sec. IlI A. Secular equation

we make the semiclassical approximation that is based on the The k's eigenva|ues are given by the secular equation
approximation of the traces and powers of the propagator as(k)=def 1— T(k)]=0. We can expand this determinant as
sums over the periodic points of the underlying classical sys-

tem. The propagator itself is taken as Bogomolnl’spera- N

tor [1]. We choose the coherent state representation and ob- P(k)= 2 Bn(k), (©)

tain an expression for the semiclassical Husimi n=0
representation of the eigenfunctions in terms of classical in\'/vhere the coefficients, (k) are related to the traces of
variants: periodic points, their monodromy matrices, a”dT(k) b (K)=tr T"(k) th?ough

Maslov indices. In Sec. IV we apply this scheme for the TN '

stadium billiard. Our conclusions and perspectives are pre-

sented in Sec. V. Ba(k)=— % 121 B j(K)bj (k). 4

Thus, knowledge of the traces up to a certajg,, implies
the knowledge of the coefficienf3, up to the same, .

Fredholm theory gives the solution to a certain class of If T(k) is unitary,P(k) is self-reversive, meaning that its
integral equations, which can also be written as operatocoefficients satisfy

Il. FREDHOLM FORMULAS FOR EIGENFUNCTIONS
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Bn-j(K)=(—DN B;(k)detT (k). (5)

This condition alone forces the eigenvalue§ adt fixedk
to be symmetric with respect to the unit circle:Nfis an

eigenvalue, then 1/is an eigenvalue too. Of course,Tifis

unitary, then this condition is automatically satisfied but we
can use it in our semiclassical approach to partially restore

unitarity.

The contributions from coefficients3; with i>[(N
+1)/2] can be expressed in terms of coefficieftswith i
<[(N+1)/2]. ([x] is the integer part ok.) So, if N is even,

P(K) = 5(k) +detT 5(k),

N/2—1 1 ﬂN/z
7(k)= 2 Bi(k)+5Bup, detT==—_ (6)
=0 N/2
If Nis odd,
P(k) = 7(k) — detT 5(k),
(N—1)/2 B
p()= > Bik), detT=—=""D2 (g
=0 BN-1)12

As a consequence of the imposition of this symmetry on th
operatorT we obtain two advantages: only traces up to half
the Heisenberg timé,=N are needed and the eigenvalues "
are constrained to lie on the unit circle or in symmetric pairs. g(K)= Tz .
These formulas relatP (k) with the traces of powers of tTOCA=T(k)]
T(K) which, in turn are related semiclassically to periodic
orbits and to the smoothed density of stdte§]. They have
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B. Green function

To extend these methods to the calculation of eigenfunc-
tions, we define a generalized Green funct{®¢k):

T(k)

G(k)= =T 8

This operator has poles at the billiard eigenvallkes, and
its residues are the projectors onto the corresponding eigen-
functions. It has a Fredholm expression as

T(k)C'(1-T(k))
P(k) ’

G(k)= €)
whereC'(1—T(K)) is the transpose of the cofactor matrix of
1-T(k) and, as in Eq(2), has an expansion in powers of
T(K).

It is then convenient to definersormalized Green opera-
tor as

G(k)

™ wador

(10
where the singularities in the denominator have been elimi-
nated. The normalized Green operator has the property
a(k,)=|¥,){,|, where|,) is the eigenvector correspond-

éng to eigenvalud, . Then, we can writg(k) in the follow-

ing way:
T(k)C'(1-T(k))

(12)

As the cofactor matrix can be expanded in powers of the
propagator and as the propagator itself is unitary we write the

been tested extensively for the hyperbola billiard by Keatinghormalized Green operator in terms of the powers of the

and Siebef3].

N/2 -1

propagator and their traces up M2 (if N is even:

N/2 -1

S (T —derT() 3, G(kT (k)

(k)= prz—=1
2 (k[T (k)

1=0

where the coefficients;(k) are given by

N/2 -1

ci(k)= E Ba-i(K). (13

An analogous formula can be derived in ca$és odd.
The coefficientsc;(k) are dependent on the tracesTof

N/Z—1 ) (12

]—detT(k) ZO (KU TT(k)]

probability density|,(q)|? to the diagonal powers of the
propagator(q|T"(k)|q). If the Weyl representation is cho-
sen, then Eq(12) gives the Wigner distribution of,) in
terms of the Weyl propagatdi7,17]. Here we choose the
coherent state representation to find the equivalent Husimi
distribution.

We remark that Eq(12) is a very compact and represen-
tation independent derivation of formulas that were previ-

through Egs.(4) and (13) and thus are independent of the ously very laboriously derived for the Wigner case. It pre-
chosen representation. On the other hand, the expression fpares in an optimal way the grounds for the semiclassical
the powers of the propagator will depend on the representapproximation because its ingredients are all dependent on
tion chosen for the calculation of the eigenfunctions. If theclassical elements, namely periodic orbits, phase space vol-
coordinate representatidg) is chosen, Eq(12) relates the ume, and generating function.
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Using the fact that dt=k, the normalized Green function is the projector onto the corresponding eigenstate, we can obtain
the Husimi distribution as

N/2 —1 N/2 —1
. i+1 _ — ti
 dakly 1 & al@ET R —deT o 2 cto@T i)
HwV(Z,Z)_ (zl2) _(z|z> N2 —1 N/Z =1 . (14

> (kT " Y(k)]— detT (k) _ZO ()t TTi(k)]

This scheme was successfuly applied in simple quanturwhere the bounce map is generated by the arc lel{gths)

maps[18]. betweens ands’; v is the Maslov index. The quantization
condition is dgtl—T(k)]=0.
Il. SEMICLASSICAL APPROXIMATION In the semiclassical theory for the spectral determinant
Green’s theorem allows us to reduce the Sdhrger P(k)=def1—T(k)] (20

equation for the billiard with Dirichlet boundary conditions

to the following linear homogeneous equation for the normathe approximate unitarity off can be used efficiently to
derivative on the borde#(s), reduce the number of periodic orbits needed for the compu-
tation of the spectrum. Similar manipulations of the Fred-
holm formulas allow for the same reduction in the semiclas-
sical calculation of single eigenfunctions of the billiard.

d(s)=—2 35 ds’¢(s')K(s,s";k), (15

where the kernel is A. Semiclassical traces and determinant

) —ik 1) L First we need the traces. It is a well known fact that they
K(s,s";k)= 5 Cosy(s) Hy [klr(s)—r"(s")], adopt the following semiclassical express[ds]:

(16)

n
_ 2 : _

with k the wave numbery(s) the angle between the normal [bn]SCI_Po;;npr |det(1 —Mp)[(H2) exilir (klp = vpm/2)],

at s and the line that connectgs) with r’(s’) (see Fig. 1, (22)

andH{Y the Hankel function of the first type and order one. o o )
We introduce the wave functiop(s) where the sum goes over all the primitive periodic orbits

(PO’ of the billiard with periodn,, which must be a divi-
1 sor ofn, Maslov indexv,, lengthl,, and monodromy ma-
(P =5 V1- p?u(p), (17 trix M. The Maslov index can be interpreted geometrically:
v, is the angle swept by the unstable manifoldvf along

with ¢(p) andw(p) the momentum representationsd(fs) the PO. ) )
and u(s). This transformation makes the kernel symmetric  The determinant o can be obtained g4
and turns Eq(15) to

[detT(k)]se=(— )N exd 27 MK)], (22)
n(s)= j; T(s',s;k)u(s’)ds’. (18 where N(k), the number of states between 0 dqds
The semiclassical theory of the kerng(s’,s;k) [1] is MK)= iAkz— iLk (23)
A Qg

based on two fundamental propertids:is semiclassically
unitary and has an effective dimensibi{k) =Lk/#, where
L is the length of the billiard. Moreover, the kernel is given
by the generating function of the classical Birkhoff njape
Eqg. (19)]. These properties have been extensively telstef
and will be assumed in what follows.

Thus, we make the semiclassical approximation by taking
T as Bogomolny’'s operatdil9) and by evaluating all inte-
grals by stationary phase approximation. Theperator for
convex billiards in the plane, taking its border as the Poin-
caresection and using Birkhoff coordinates, is

k 1/2 1/2 T
— ex ikl(s’,s)—igv ,

2i
(19 FIG. 1. Geometry of the billiard.

l(s',s)
dsds’

T(s',s;k)=
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with A the area of billiard and. its length. These are the and z'=(q'/o—iop’)/\2 and z=(g/c—iop)/\2. The
semiclassical ingredients needed for the calculation of thenost important contributions come from those po#itsand

spectrum and of the coefficients(k). s'* that make stationary the phage
. ) . . b i iv2— 4l
B. Semiclassical propagator in coherent state representation —(s*,8'*)=—s* ——z+—(s*,s'*)=0
; ; . Js ’ o Js ! ’
We first obtain the coherent state representation for one
iteration of the bounce map, FT) i A l
—(s*,8'*)=—8"* ——72'+—(s*,8'*)=0. (27
as o g Js

<z’|T|z>=J ds ds(z'|s'){(s'|T|s)(s|2). (24
The solution to Eq(27) satisfying the reality conditions is

That is to say, . A
K\V2[ N1z /2) $7=0, Z(sTsT)=-p
! — I — v
<Z |T|Z> 71_0_2) (27”) e( . Jl i} .
21 |12 sT=q, g(s ,$'*)=p". (28)
XJ ds dé‘—, exgik®(s’,s)], (25
9sds This is a classical trajectory frong(p) to (q',p’). Thus, the
wh matrix elementz’|T|z) will be nonzero only ifzandz’ are
ere : ) .
connected by the classical dynamics. Let us call these points
i i i i\2 i iV2_ z. and z, and let us calculate the matrix element to next
’ 12 2 12 Il 2 . ¢ . . .
(s ,S)ZEZ T 5528 T LS T ST IS order in their nelghborho.odiz[ﬁr 62'|T|z.+ 8z). To this
effect we expandb(s’,s) in Eq. (25) to second order and,
+1(s’,s), (26) after some algebra,

i— i [ [ iV2
! _ 12 12 _ ’ ’
5 o0z'“+ 552 os o 0z' 8s

[
—(z2,°—z,"—zg+z

®(8s',8s)~1(q.,qc)+ —i(Sz’Z—i&?zc—Ezczc—Ezézc +2 72-22- 22+ 22|+
+i5_2+ | 552 iﬁ5_5+ —282|5'2+2 i 5'5+a2|52 29
207 52 08 T OOt | G 0T 25555 081 05T G2 057 | @9
where §s=s—q. and §s' =s’ —q,. We change to new integration variablés and 8s’ and obtain
1/2 k 1/2 2 1/2
(zi+ 6z |T|zc+6z>w(m) (ﬁ) exp(—mv/Z)fdés dss PP exdikd(ss’,85)]. (30)

We now insert Eq(29) in Eq. (30). All terms are constant with respect to integration except the last one in square brackets.
The resulting integral is the coherent state representation, with respéég)toof the linearized map, whose generating
function is quadratic, which we have introduced in E45):

1 k — —
(6z’|T|5z)=\/—_exp{z(—rC52’2+25z’5z+rcﬁzz) , (31)
Sc c
wherer. y s. are the matrix elements of the linearized map in complex coordinates. Finally we arrive at
, , K=o 2 T, 15, ; T '
(zt+ 62" |T|z.+ 6z)~ex o (22 7ot 7o) lexg K| 62'zg+ 6220+ S5zezet 57czc | |exp ikl i 5w (62'|T|62).
(32

This result lets us evaluate the matrix element we were looking #5F,"|z)/(z|z), which will be a sum of contributions of
periodic pointsz,, of periodn in the semiclassical limit,

(2| T"|2) _ (Zppt 62| T"2pp+ 62)
(2|2) pon (Zppt 6Z|Zppt 62)

(33

To obtain the compositiokz, , + 5z|T”|zpp+ 8z) we use the expressig832) and the composition rule of EGA6). Then



PRE 61 FREDHOLM METHODS FOR BILLIARD . .. 6531

(2| T"2) 1 . .
) ~%:n Spp)\ppexp{ ikl pp~ 12 Vpp

k — _ _
exp{gpp(— [ op0Z2+206282+1 pp07°) — kézﬁﬂ, (34)

where\ ,, can be calculated by E¢A7), v,,=n (because of whereo,,0,==*1 andR, and R, move the center of the
the Dirichlet boundary conditiopsandl,, is the length of  coherent state according to E§5).

the PO starting fromdp,,,pp,). As we can see, the matrix In this way, the diagonal matrix elements of the propaga-
element behaves as a Gaussian in the vicinities of the perier in symmetrized coherent state representation are

odic point. This allows us to write the Husimi representation

of the nth power of the propagator as a sum of contributions

¢ P . : ; (7T
rom periodic points of perioch. Each term of the sum is a (z|z)
Gaussian packet in phase space whose parameters are related

to the monodromy matrix in complex coordinates. A PO

composed byn points will give n differentcontributions to 4<z| z)
this sum, due to the fact that the monodromy matrices at

each point differ. However, the invariant properties of these +‘7X‘7y<Z|TRny|Z>)- (37)
matrices are the same and the usual Gutzwiller-Tabor trace
formula[16] can be recovered by integration. Of course, a
periodic point of perioch will contribute also to then (r

1+ O'XRX 1+o,R

2

y

|2)

(<Z|T|Z> + G'X<Z|TRX|Z> + Uy<Z|TRy|Z>

We have already calculate|T"|z). We still have to
calculate the other three contributionsz| T"R,|z),
(zIT"Ry|z), and(z|T"R,Ry|z). We can conclude using the
natura) powers of the propagator. results we have already obtained that each of them will be a

We should remark at this point that the different semiclas- sum of Gaussians centered in those poirtisat the dvnam-
sical representations of the propagator in terms of the corre- P y

sponding generating function are onlgemiclassically ics connects with their symmetric partneRsz, Rz, RRyz,

equivalent and thus can give different results at fiht& his respectively. These points belong to PO's whose periods are

is not true for the calculation for the spectral determinant,zn’ which are symmetn_c under the qperat|oﬁ§, Ry,
respectively. The incrememéz with respect toRz

whose semiclassical expression in terms of periodic orbits %Q v g . .
the same in all representations. It is because of this that th lt:Zt RthR RY% is related to the incremerdz with re-
different ways of computing eigenfunctions are not equiva- spect toz throug

lent. For the calculation dfg,(s)|? the closedbut not nec- 1 if R=R

esarily periodi¢ orbits are needefl]. For the Wigner func- X

tion calculation only periodic points are needed but each Roz=tgrdz, tg=y —1 if R=R, (38)
contribution is extended in phase space. In the present for- 1 if R=RR,.

malism we will obtain the Husimi distributions of eigenfunc-
tions in terms of deformed localized Gaussians centered iThus we arrive at
the periodic points, constructed solely in terms of classical

information. (2| T"R|Z) 1
W%p;m T)\pp EX[< ikl pp —i 2— Vpp
C. Symmetries ' pp
Our system, the stadium billiard, has two discrete spatial Xexr{L(—r_ 822+ 2tr267
symmetriesR, andR,, the two reflections with respect of 2 PP
the coordinate axes. These spatial symmetries in the domain o
reflect in the border and, thus, in the classical and quantum +rpp522)—k525%, (39
map on it. Their action on the Birkhoff coordinates of phase
space ¢,p) is

where the sum goes over the periodic points of period 2
L that belong to PO’s symmetric undBr The quantities;,,
R.«(a,p)—(L—0a,—p), Ry(q,p)ﬁ(z—q,—p), Top» lpp: Vpp, @Nd\p, are calculated along the trajectory
that connect to Rz, i.e., half PO.
RRy(q,p)— (39 IV. SEMICLASSICAL EIGENFUNCTIONS
FOR THE STADIUM

L
§+q,+p .

In order to have coherent states on the border with correct
symmetries we need to project them usiRg andR,, the
unitary representations of the symmetrRgx,y)=|—x,y)
andRy|x,y)=|x,—y). Then we define

We use the semiclassical approach we introduced above
for the stadium billiard. We choose odd-odd symmetries
(ox=0y=—1) ando=2. We have periodic points with de-
symmetrized period up to @&round 800. We have used the
symbolic dynamics developed by Biham and Kvg2€] to

Iz :(1+‘7XRX 1+UVRV) 2) ' (3¢)  obtain them. The wave numbis related to the maximum
Ix% 2 2 (z|z) period used in the expansiofiid) by P(k)=(L/2m)k
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k= 20.0000 p= 1 k= 20.0000 p= 2 k= 20.0000 p= 3 k= 20.0000 p= 2 k= 20.0000 p= 3

-
| .
-

B -

k= 20.0000 p= 4 k= 20.0000 p= 5 k= 20.0000 p= 6 k= 20.0000 p= 4 k= 20.0000 p= 5 k= 20.0000 p= 6

- b —
' ) | - .
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S —1!*

k= 20.0000 p— 4 k= 20.0000 p= 5 k= 20.0000 p= 6 k= 20.0000 p= 4 k= 20.0000 p= 5 k= 20.0000 p=

—aa

FIG. 2. Phase space representations for the first six powers of FIG. 3. Semiclassical phase space representations for the first
Bogomolny’s operator. For each power we show modutos's 1 six powers of Bogomolny's operator. For each power we show
and 2 and phasdrows 3 and 4 modulus(rows 1 and 2 and phasérows 3 and 4

~0.4k. In this way we can obtain semiclassical approxima-cally. (The discontinuities come from the change in dimen-
tions of eigenfunctions of wave numbles 20. sion of the operator.

In Fig. 2 we show the phase space representations of the To keep the method consistent we evaluated the
first six powers of Bogomolny'sl operator fork=20; in  semiclassical Husimi expansion in those values lof
Fig. 3 we show the semiclassical approximations. We sethat minimize the semiclassical secular determinant.
that the exact representations show global maxima in th&/e see in Figs. 6 and 7 the exact eigenfunctidfisst
bouncing ball region that cannot be reproduced semiclasseolumn and their corresponding semiclassical Husimi
cally for the lowest powers. However, the overall semiclasrepresentations(second column obtained as the real
sical behavior is very close to that of the exact representgpart of Eq.(14). The global behavior is well reproduced;
tions. (Because of the symmetries we chose, we have nbowever, the finer details are hard to mimic. The bouncing
semiclassical approximation to the first power of the operatoball region is problematic: in some functions
because the contribution of the only periodic point of period(e.g.,k=21.16) some probability leaks to this region. Prob-
1is zero) ably PO’s with longer periods that approximate the bouncing

We select two energy range«e[19.1,20.0 and k  ball orbits could make a better picture for this
€[20.5,21.3. There are four eigenenergies in each of thesaegion.
ranges. We show the absolute value of the secular determi- One of the advantages of formu(a2) for the projector
nant,|P(k)|, for each of them in Figs. 4 and 5. The full line is that it has no singularities between eigenvalues. It is
is the semiclassical approximation, the dashed line is th@ossible to study continually its behavior as a function
secular determinant for Bogomolny’s operator. The verticalof k in order to see its sensitivity to changes kn Some
lines are the exact quantukneigenvalues calculated by the properties of the exact distribution as a functionkadre as
scaling methodi21]. We see a good approximation when we follows [22]:
use the periodic point expansion. The agreement shows that (i) The distribution is positive at the eigenvalues.
in this region the spectrum is well represented semiclassi- (ii) The distribution hadN(k) zeros at eigenvaluds, .
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FIG. 4. Secular determinant. In full line we
show the PO’s approximation; in dashed line, the
exact by using Bogomolny's operator. For the
semiclassical approximation we summed up to
period 8.

[Pl

These two properties follow from the fact tHa, (z,2) is V. CONCLUSIONS

the modulus of an analytic function. The distributions be- Using Fredholm theory we have given a very compact
tween eigenvalues can become negative. In particular, it caand representation independent derivation of the projector on
be shown that at the value &fthat maximizesP(k), the  a single eigenfunction for unitary quantum maps. Expressing
distribution is constant. This property can be used to controthe projector in the coherent state basis we wrote a semiclas-
the semiclassical approximations. sical expression for the Husimi distributions of the billiard’s
In Figs. 8 and 9 we show the behavior of the distributioneigenfunctions. Each periodic point contributes with a
(zlg(k)|z)/{z|z) between the semiclassical eigenvaldes Gaussian centered in it whose parameters are calculated only
=19.18 andk=19.38. Whenk=19.18 the distribution is With classical information. We should not underestimate the
positive and has well defined minima that approach Zero. Aglfflcultles and CompleXitieS inherent to this method. Hun-
we move away from the eigenvalue, the distribution change§reds of Gaussian contributions have to conspire to make a
smoothly. Initially it moves away from the plarg=0 in positive definite @st_nb_ungn v_wth\l zeros that approximate
the positive direction, then it comes back and turnsth® quantum Husimi distributions. _ _
negative. During this “evolution” it flattens visibly and we The projector (1_2) can be represented in poordl_nate
cannotdiscern its features. At=19.32, aproximately the space. We obtain (q|#)(¢|q), whose semiclassical

maximum of the secular determinant, see Fig. 4, the distrigpproximation can be directly compared to the probability

bution is constant. At the semiclassical eigenvallie dgrjsity in t_he section. This representation ha; an add!tional
L o S . difficulty, since the semiclassical approximation is written
=.19.38 the distribution is positive again with well defined as a sum over closed trajectories, periodic or not, in
minima. ) _configuration space. Those that are not periodic are more
We can see from Figs. 6 and 7 that the semisy nimber and more difficult to find. Anyway, we can
classical approximation is relatively good. It is not trivial to apply our scheme for Bogomolny'§(q’,q) operator and
obtain a positive defined distribution wit zeroes adding  compare the results with the exact quantum calculation. In

several hundreds of Gaussians, each with its phase and deiy. 10 we see that the approximation is excellent at this
formation. level.

FIG. 5. Secular determinant. In full line we
show the PQ’s approximation; in dashed line, the
exact by using Bogomolny's operator. For the
semiclassical approximation we summed up to
period 8.

Pl ~r |

ol . M-
20.5 20.6
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k= 19.2087 k= 19.1800 k= 20.5289 k= 20.5200

k= 19.4536 k= 19.3800 k= 20.7475 k= 20.7800

.

k= 19.5562 k= 19.6100 k= 20.9699 k= 20.9600

| __&

¢

o

7

k= 19.8242 k= 19.9450 k= 21.2089 k= 21.1600
l ~

I
q L

FIG. 6. Husimi representations of stadium eigenfunctidat FIG. 7. Husimi representations of stadium eigenfunctitiag
panelg and their semiclassical approximatiomght panel$ for the  panel$ and their semiclassical approximatiafnigiht panel$ for the
energy range of Fig. 4. For the semiclassical approximation wesnergy range of Fig. 5. For the semiclassical approximation we
summed up to period 8. summed up to period 8.

L

The maximum periodP in the expansions is related to the this direction have been obtained by Vergini and Carlo
energy in the way?~0.4k. Due to the exponential prolifera- [21,24,21.
tion of orbits in chaotic systems, the method cannot be ap-
plied for arbitrarily high energies. The measure of this pro-
liferation is the topological entropyV which relates the
numbep of PO’s of a given period with the period itself, We introduce the following symplectic transformatign
Np=expWP) [23]. For the stadiumW~0.94. Then, fokk  depending upon parametet, acting on a point of classical
~100 we need PO'’s of periods up =40, whose number phase spaceq(p) [26]:
is Np~exp(0.94< 40)~10'". The Fredholm method we de-
veloped is a first step and shows that the eigenfunctions can
be described as expansions in terms of the periodic points of ( z ) (q) ( 120 —ial \/5) ( q
the underlying classical system. It eliminates the divergen- = = .
cies associated that the schemes based on smoothings in en- Pz P/ =20 alV2 ]ip
ergy have. However, the exponential divergence of periodic ] ) N ] )
orbits poses a serious practical problem, as discussed in thgposing reality conditions on the inverse transformation we
previous paragraph. This method can only become practicalee thaz=ip,. A linear transformatiorM = (3 g) in (q,p)

for large k,, if some way of selecting a few “important” phase space has a representalirin (z,p,) phase space by
orbits at each value df can be developed. Some results in conjugation withZ,

APPENDIX A: COMPLEX PHASE SPACE

) . (A
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=3

[
(a+d)—i ?—(rc

M,=ZMZ 1= (A2)

rzz[(d—a)-i-i

This (z,p,) phase space allows a passage to quantum me- We now define the Husimi representation of a veatas
chanics. This is done in a Hilbert Bargmann space by intro-
ducing operatorg and p, that satisfy the conmutator rela-
tions

(zl¥)|?

[vaz]:iﬁ- [Zaz]:[pzvpz]zo- (AS) H'JI(Z)EW.
Any vector |) in Hilbert space can be represented in
this new space a&| )= [dq(z|q){(q| ), where the coher-
ent states are (z|q)=[1/(who?)]Yexd— (1) (222 plane

2 2y _ . .
+ql(20 )= V2zg/0)]. The scalar product 1S4 th2) The representation of a linear symplectic transformation

=J (D Pa(2)du(z)  with  norm  du(z)=(1/m)exp M in phase space in terms of a unitary operator of Hilbert
(—zZh)dRe(z)d Im(z). Bargmann space i27]

(A4)

It is a real positive function for every in the complex

k=19.18 k=19.20 k=19.30 k=19.32

FIG. 8. Variation of the normalized Green function in coherent  FIG. 9. Continuation of Fig. 8. Variation of the normalized
state representation betwelker 19.18 andk=19.28.k=19.18 isa  Green function in coherent state representation betvkeeh9.28
semiclassical eigenvalue. andk=19.38.k=19.38 is a semiclassical eigenvalue.
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| W/\/\/\@

q

0.03
T

0.02
T

FIG. 10. Exact eigenfunction
(dashed ling for k=20.5289 and
its approximation by using Bogo-
molny’s operator in the normal-
ized Green functiortfull line).

001

a b with
M=(C d)e<z uwl2)

arg's)—arg's;) —arg’s,)

- k . i
=Texp(—arg(s)) r{—_(—rz’2+22’z+rzz) . A(M1,M5,M;M,)= exp{z
sl

2s
4=l
—arg =— =+1, (A7)
$1S;

This representation is up to a phd€¥,2§ and its compo-
sition law is

The accumulated phase due to succesive transformations
, . leads to the Maslov index of the trajectory.
f (Z'|U(M1)[2)(ZUM)|2")d(2) In case the phase space shows periodicity in coordinate or
momentum, we have to periodize the coherent states as in
=N(M{,M3,MM,)(Z'[U(MM,)|2"), (A6)  [29]
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